41 research outputs found

    Simulation of the forming and assembling process of sheet metal assembly

    Get PDF
    A sheet metal assembly must meet functional, manufacturing, and sometimes also esthetical requirements. The properties of the assembly are to a large extent affected by the manufacturing process, i.e. the forming processes of the sheet metal components and the subsequent assembling sub-processes. It is of a great industrial interest to be able to predict the properties of the assembly at an early design stage. This paper presents a methodology, based on Finite Element simulations, which makes it possible to accurately predict the properties of a sheet metal assembly. Each forming process of the individual components is simulated, and all properties affected by the forming process are included in the subsequent simulations of the assembling process. Thus, this methodology makes it possible to optimize both the functional properties of the assembly and also its manufacturing process considering all mechanical effects introduced by the individual manufacturing processes. A case study of a semi-industrial assembly has been conducted and the simulation results agree well to experimental data

    An evaluation of simple techniques to model the variation in strain hardening behavior of steel

    No full text
    It is important to consider variations in material parameters in the design of automotive structures in order to obtain a robust and reliable design. However, expensive tests are required to gain complete knowledge of the material behavior and its associated variation. Consequently, due to time and cost constraints, simplified material scatter modeling techniques based on scatter data of typical material properties provided by the material suppliers are used at early design stages in simulation-based robustness studies. The aim of this paper is to study the accuracy of the simplified scatter modeling methods in representing the real material variation. The simplified scatter modeling methods are evaluated by comparing the material scatter obtained by them to the scatter obtained by complete tensile tests, which are obtained after detailed timeconsuming experimental investigations. Furthermore, an accuracy assessment is carried out based on selected responses from an axially-crushed, square tube made from DP600 steel.Funding agencies: Robust and multidisciplinary optimization of automotive structures Project - Vinnova FFI; Volvo Car Corporation</p
    corecore